If u=f(r) where r^2=x^2+y^2, show that ∂^2u/∂x^2+∂^2u/∂y^2=f''(r)+1/r f'(r)| Partial Differentiation
11:30
If u = log(x^3 + y^3 + z^3 − 3xyz) then (∂^2u/∂x^2+∂^2u/∂y^2+∂^2u/∂z^2)= −3/(x + y + z)2
10:48
Partial Differentiation Problem- 3
32:45
Limit 36 -Limit ve 0/0 Belirsizliği - Test 11 | Sayfa 80-81-82
15:34
Partial Differentiation #8 in Hindi (M.imp) | Engineering Mathematics
12:05
If u = 𝐫^𝐦, where 𝐫^𝟐 = 𝐱^𝟐+𝐲^𝟐+𝐳^𝟐,then prove that (𝐝^𝟐 𝐮)/(𝐝𝐱^𝟐 ) + (𝐝^𝟐 𝐮)/(𝐝𝐲^𝟐 ) + (𝐝^
1:00:56
Diferansiyel Denklemler Vize Sınavı Soru Çözümü 1 (Geçme Garantili)
17:04
If u=f(r) where r2=x2+y2+z2 then dx2d2u+dy2d2u+dz2d2u=f"(r)+r4f′(r) partial differentiation
26:18