If u=f(r) where r^2=x^2+y^2, show that ∂^2u/∂x^2+∂^2u/∂y^2=f''(r)+1/r f'(r)| Partial Differentiation
11:30
If u = log(x^3 + y^3 + z^3 − 3xyz) then (∂^2u/∂x^2+∂^2u/∂y^2+∂^2u/∂z^2)= −3/(x + y + z)2
21:55
PARTIAL DIFFERENTIATION MULTIVARIABLE CALCULUS LECTURE 4 IN HINDI @TIKLESACADEMY
17:04
If u=f(r) where r2=x2+y2+z2 then dx2d2u+dy2d2u+dz2d2u=f"(r)+r4f′(r) partial differentiation
10:48
Partial Differentiation Problem- 3
15:34
Partial Differentiation #8 in Hindi (M.imp) | Engineering Mathematics
22:27
Problems on Partial Differentiation- U=log(x^2+y^2+z^2) , U=tan^-1(2xy/x^2-y^2), Z=f(x+ay) +Q(x-ay).
12:27
If u=f(r), where r^2 = x^2 + y^2 , show that d^2 z/dx^2 +d^2 z/dy^2 = f"(r)+1/r f'(r)
27:14