Lec 16 : Introduction to Transformer: Positional Encoding and Layer Normalization

43:33
Lec 17 : Implementation of Transformer using PyTorch

1:01:44
Lec 15 : Introduction to Transformer: Self & Multi-Head Attention

16:41
Simplest explanation of Layer Normalization in Transformers

1:09:58
MIT Introduction to Deep Learning | 6.S191

22:36
Lec 12 : Sequence-to-Sequence Models

1:01:31
MIT 6.S191: Recurrent Neural Networks, Transformers, and Attention

3:25:28
Rahatlama ve Ruh için 50 Klasik Müzik Başyapıtı | Beethoven, Mozart, Chopin, Bach, Vivaldi

13:36