George Karniadakis - From PINNs to DeepOnets
![](https://i.ytimg.com/vi/IwN2mAwSw8k/mqdefault.jpg)
1:09:47
Michael Mahoney - Dynamical systems and machine learning
![](https://i.ytimg.com/vi/1bS0q0RkoH0/mqdefault.jpg)
58:12
DeepOnet: Learning nonlinear operators based on the universal approximation theorem of operators.
![](https://i.ytimg.com/vi/JoFW2uSd3Uo/mqdefault.jpg)
47:27
Physics Informed Machine Learning: High Level Overview of AI and ML in Science and Engineering
![](https://i.ytimg.com/vi/Bd4KvlmGbY4/mqdefault.jpg)
59:56
Anima Anandkumar - Neural operator: A new paradigm for learning PDEs
![](https://i.ytimg.com/vi/G_hIppUWcsc/mqdefault.jpg)
1:10:36
Physics-Informed Neural Networks (PINNs) - An Introduction - Ben Moseley | Jousef Murad
![](https://i.ytimg.com/vi/0Ve9xwNJO2o/mqdefault.jpg)
55:02
Zongyi Li's talk on solving PDEs from data
![](https://i.ytimg.com/vi/_j7bceE9AyA/mqdefault.jpg)
2:06:19
ICML 2024 Tutorial"Machine Learning on Function spaces #NeuralOperators"
![](https://i.ytimg.com/vi/qYmkUXH7TCY/mqdefault.jpg)
51:22