DIFFERENTIATION || 2 f(x) + f ( - x) = 1+x Then find f'(10)
16:22
2 f( x) + 3 f( - x) = x^2- x+ 1 Then f'( 1) = 7/5 || DIFFERENTIATION
19:02
f( x) = { ( 1+x) /(2+x) }^( 3+2x) Then f'(0) = 3/16 - (1/4) log2 || DIFFERENTIATION
17:17
DIFFERENTIATION || First Order || y= √( x/a) +√( a/x) Then 2xy( dy/ dx) = { ( x/a) - ( a/x) }
9:17
f( x) =(1+x) ( 1+x^2) ( 1+x^4) ( 1+x^8) || Value of f'( 1) || DIFFERENTIATION
15:32
xy+ 1 = sin ( xy) Find dy/ dx || DIFFERENTIATION || Implicit function
15:10
y= x tan { (1/2) log ( x^2 + y^2) }Then( dy /dx) = ( x+y) /( x- y) || DIFFERENTIATION
23:39
DIFFERENTIATION| y= (sinx) ^(logx) Then dy/ dx= ( sinx) ^( logx) [ log( sin x) /x + (cotx) (log x) ]
14:29