14. Regression (cont.)

1:15:29
15. Regression (cont.)

1:15:14
21. Generalized Linear Models

1:18:05
17. Bayesian Statistics

1:16:02
13. Regression

1:18:03
1. Introduction to Statistics

1:18:17
Stanford CS229: Machine Learning - Linear Regression and Gradient Descent | Lecture 2 (Autumn 2018)

1:16:53
20. Principal Component Analysis (cont.)

1:20:57