scRNA-seq: Dimension reduction (PCA, tSNE, UMAP)
![](https://i.ytimg.com/vi/o8r-tWHPWoQ/mqdefault.jpg)
6:31
scRNA-seq: Clustering
![](https://i.ytimg.com/vi/eN0wFzBA4Sc/mqdefault.jpg)
18:52
UMAP Dimension Reduction, Main Ideas!!!
![](https://i.ytimg.com/vi/00TSeKZyeXQ/mqdefault.jpg)
25:49
t-SNE Simply Explained
![](https://i.ytimg.com/vi/TbXoEraNfEI/mqdefault.jpg)
16:24
Single-cell trajectory and pseudotime analysis with Monocle3 and Seurat in R
![](https://i.ytimg.com/vi/qcLJ_JO6bn8/mqdefault.jpg)
45:41
6. Dimensionality reduction of scRNA-seq data
![](https://i.ytimg.com/vi/o_cAOa5fMhE/mqdefault.jpg)
18:46
Latent Space Visualisation: PCA, t-SNE, UMAP | Deep Learning Animated
![](https://i.ytimg.com/vi/6BPl81wGGP8/mqdefault.jpg)
9:16
UMAP explained | The best dimensionality reduction?
![](https://i.ytimg.com/vi/_CzYVI8axao/mqdefault.jpg)
5:54