[Representation Subspace Distance for Domain Adaptation Regression] 설명
![](https://i.ytimg.com/vi/yTa8Ae4HvNM/mqdefault.jpg)
49:11
[Deep Batch Active Learning by Diverse, Uncertain Gradient Lower Bounds] 설명
![](https://i.ytimg.com/vi/akrCACQQmC0/mqdefault.jpg)
51:13
[Gradient episodic memory for continual learning] 설명
![](https://i.ytimg.com/vi/Rta6zByM26w/mqdefault.jpg)
48:09
Lange Symposium 2025: Emmanuel Candès, Stanford University
![](https://i.ytimg.com/vi/SogipbE18D4/mqdefault.jpg)
52:39
[Active learning for convolutional neural networks: A core set approach] 설명
![](https://i.ytimg.com/vi/IWBVkkmDoi0/mqdefault.jpg)
37:31
TransferLab: Towards a statistical theory of data selection under weak supervision - Pulkit Tandon
![](https://i.ytimg.com/vi/pWGXhwrDpHo/mqdefault.jpg)
50:53
[Averaging weights leads to wider optima and better generalization] 설명
![](https://i.ytimg.com/vi/2XniGoni_5Q/mqdefault.jpg)
46:46
[What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision] 설명
![](https://i.ytimg.com/vi/P_fHJIYENdI/mqdefault.jpg)
24:52