13. Incremental Improvement: Max Flow, Min Cut

1:22:32
14. Incremental Improvement: Matching

1:22:10
12. Greedy Algorithms: Minimum Spanning Tree

14:02
Maximum flow Minimum Cut Algorithm

1:25:25
16. Complexity: P, NP, NP-completeness, Reductions

21:56
Network Flows: Max-Flow Min-Cut Theorem (& Ford-Fulkerson Algorithm)

18:27
Richard Feynman: Can Machines Think?

1:09:58
MIT Introduction to Deep Learning (2024) | 6.S191

15:55