Lecture 8 - Data Splits, Models & Cross-Validation | Stanford CS229: Machine Learning (Autumn 2018)
1:26:03
Lecture 9 - Approx/Estimation Error & ERM | Stanford CS229: Machine Learning (Autumn 2018)
1:20:14
Lecture 11 - Introduction to Neural Networks | Stanford CS229: Machine Learning (Autumn 2018)
1:20:41
Lecture 10 - Decision Trees and Ensemble Methods | Stanford CS229: Machine Learning (Autumn 2018)
1:18:52
Lecture 5 - GDA & Naive Bayes | Stanford CS229: Machine Learning Andrew Ng (Autumn 2018)
1:20:15
Lecture 18 - Continous State MDP & Model Simulation | Stanford CS229: Machine Learning (Autumn 2018)
1:20:25
Lecture 7 - Kernels | Stanford CS229: Machine Learning Andrew Ng (Autumn 2018)
1:49:28
General Relativity Lecture 1
1:20:31