25. Symmetric Matrices and Positive Definiteness

47:52
26. Complex Matrices; Fast Fourier Transform

45:56
28. Similar Matrices and Jordan Form

51:12
24. Markov Matrices; Fourier Series

49:10
17. Orthogonal Matrices and Gram-Schmidt

16:28
SVD Visualized, Singular Value Decomposition explained | SEE Matrix , Chapter 3 #SoME2

50:40
27. Positive Definite Matrices and Minima

10:10
What Does It Mean For a Matrix to be POSITIVE? The Practical Guide to Semidefinite Programming(1/4)

45:27