(ML 10.2) Posterior for linear regression (part 1)
![](https://i.ytimg.com/vi/qz2U8coNwV4/mqdefault.jpg)
14:55
(ML 10.3) Posterior for linear regression (part 2)
![](https://i.ytimg.com/vi/0F0QoMCSKJ4/mqdefault.jpg)
9:12
Introduction to Bayesian statistics, part 1: The basic concepts
![](https://i.ytimg.com/vi/nbBvuuNVfco/mqdefault.jpg)
12:51
Singular Value Decomposition (SVD): Mathematical Overview
![](https://i.ytimg.com/vi/sDv4f4s2SB8/mqdefault.jpg)
23:54
Descenso de Gradiente, paso a paso
![](https://i.ytimg.com/vi/LzZ5b3wdZQk/mqdefault.jpg)
15:20
11d Machine Learning: Bayesian Linear Regression
![](https://i.ytimg.com/vi/hI5HfrXSbmg/mqdefault.jpg)
10:01
Manchester City - Real Madrid | UEFA Champions League | DAZN Highlights
![](https://i.ytimg.com/vi/XepXtl9YKwc/mqdefault.jpg)
6:12
Maximum Likelihood, clearly explained!!!
![](https://i.ytimg.com/vi/148EUutsU8Q/mqdefault.jpg)
1:26:27