2 (arc sin x)= arc sin {2x √(1- x^2)} || arc sin x means sin inverse x || INVERSE CIRCULAR FUNCTIONS
3:44
3( arc sin x) = arc sin ( 3x- 4x^3) || arc sin x means sin inverse x || INVERSE CIRCULAR FUNCTIONS
7:32
arc sin x + arc cos x=π/2 || INVERSE CIRCULAR FUNCTIONS
13:22
y= arc tan { cosx /( 1+ sin x) }+ sin ( e^x) Then 2( dy/ dx) + 1= 2e^x cos ( e^x)
13:28
POLYNOMIAL || DIVISION of TWO POLYNOMIALS May or may not be a POLYNOMIAL || Explained With Example
22:54
PRINCIPAL VALUE of arc cos ( - 1/√2 ) || PRINCIPAL VALUE || INVERSE TRIGONOMETRIC FUNCTIONS
14:46
y= arc cos [ x^2 + √ ( 1- x) ( 1- x^3) ] || DIFFERENTIATION
15:53
Value of arc sin (sin10) || Concept of General solution of Trigonometric Equation ||
21:31