Train-Test Split and Cross-Validation, sklearn.model_selection, cross_val_score, and cross_validate
![](https://i.ytimg.com/vi/CFA877KhPl0/mqdefault.jpg)
14:54
Feature Engineering Using The sklearn.preprocessing Package
![](https://i.ytimg.com/vi/fjWMBNU_Z0Y/mqdefault.jpg)
25:27
Empirical Risk Minimization and General Machine Learning Workflow
![](https://i.ytimg.com/vi/7bzSIX2I2Uk/mqdefault.jpg)
37:56
Linear regression fundamentals: loss function, gradient, and optimization with Python example
![](https://i.ytimg.com/vi/fSytzGwwBVw/mqdefault.jpg)
6:05
Machine Learning Fundamentals: Cross Validation
![](https://i.ytimg.com/vi/157JtMJUlko/mqdefault.jpg)
14:45
Application of Calculus in Backpropagation
![](https://i.ytimg.com/vi/swCf51Z8QDo/mqdefault.jpg)
2:13
Intuition: Training Set vs. Test Set vs. Validation Set
![](https://i.ytimg.com/vi/FvlAINfSLyg/mqdefault.jpg)
32:36
Data Loading, Understanding, and Filtering for Machine Learning Using Pandas
![](https://i.ytimg.com/vi/0EV6UoKM4AM/mqdefault.jpg)
38:29