RoPE (Rotary positional embeddings) explained: The positional workhorse of modern LLMs
![](https://i.ytimg.com/vi/o29P0Kpobz0/mqdefault.jpg)
11:17
Rotary Positional Embeddings: Combining Absolute and Relative
![](https://i.ytimg.com/vi/SMBkImDWOyQ/mqdefault.jpg)
13:39
How Rotary Position Embedding Supercharges Modern LLMs
![](https://i.ytimg.com/vi/Mn_9W1nCFLo/mqdefault.jpg)
1:10:55
LLaMA explained: KV-Cache, Rotary Positional Embedding, RMS Norm, Grouped Query Attention, SwiGLU
![](https://i.ytimg.com/vi/9-Jl0dxWQs8/mqdefault.jpg)
22:43
How might LLMs store facts | DL7
![](https://i.ytimg.com/vi/Kv90HQY9lZA/mqdefault.jpg)
23:26
Rotary Position Embedding explained deeply (w/ code)
![](https://i.ytimg.com/vi/UPtG_38Oq8o/mqdefault.jpg)
36:16
The math behind Attention: Keys, Queries, and Values matrices
![](https://i.ytimg.com/vi/2tS_bXPoriI/mqdefault.jpg)
32:31
Round and Round We Go! What makes Rotary Positional Encodings useful?
![](https://i.ytimg.com/vi/KJtZARuO3JY/mqdefault.jpg)
57:45