Lecture 9 - Approx/Estimation Error & ERM | Stanford CS229: Machine Learning (Autumn 2018)
1:20:41
Lecture 10 - Decision Trees and Ensemble Methods | Stanford CS229: Machine Learning (Autumn 2018)
1:23:26
Lecture 8 - Data Splits, Models & Cross-Validation | Stanford CS229: Machine Learning (Autumn 2018)
1:49:28
General Relativity Lecture 1
1:20:31
Lecture 14 - Expectation-Maximization Algorithms | Stanford CS229: Machine Learning (Autumn 2018)
1:18:17
Stanford CS229: Machine Learning - Linear Regression and Gradient Descent | Lecture 2 (Autumn 2018)
1:19:34
Locally Weighted & Logistic Regression | Stanford CS229: Machine Learning - Lecture 3 (Autumn 2018)
1:15:20
Stanford CS229: Machine Learning Course, Lecture 1 - Andrew Ng (Autumn 2018)
1:47:39